
PHYSICAL REVIE% A

Fluctuations of dynamical scaling indic(m in nonlinear systems

Jean-Pierre Eckmann' and Itamar Procaccia
Department of Chemical Physics, The Weizmann Institute of Science, 76 IOO Rehovot, Israel

(Received 19 February 1986)

Due to fluctuations around the metric entropy of chaotic dynamical systems there exists a spec-

trum of invariant dynamical scaling indices, complementary to the range of invariant static scaling

indices which have been discovered and apphed recently. The basic scaling behavior in both cases is

shown to be rooted in the thermodynamic formalism of dynamical systems. An explicit simple ex-

ample of these ideas is given, stressing their use in characterizing complex behavior.

Despite numerous successes, there is still a gap between
experimentation on nonlinear time-dependent physical
systems and dynamical systems theory. One of the
achievements in bridging this gap has been the definition
and measurement of several in variants that describe
characteristic aspects of the signals that one faces in the
laboratory. ' In recent years, it has become common-
place to measure dimensions, entropies, and Liapunov ex-
ponents for signals that come from the dynamics on a
strange attractor. Obviously, these invariants are insuffi-
cient for a complete characterization of a system; very
different attractors may have, for example, the same di-
mension. To gain further insight into the detailed nature
of strange sets in general, and of dynamical systems in
particular, it has recently been proposed that one should
consider a new set of invariants which consist of a range
of scaling indices existing on the strange attractor.

Let us illustrate this for the case of the dimension.
Picking a point x; in the attractor, one asks for the proba-
bility that other points of the attractor fall within a small
distance l of that point. Denoting that probability by

p; (I},one defmes a;(l) by

pt(l)=l '

In terms of the invariant measure p(x}dx of the system on
the attractor,

p;(l)= J' „,p(y)dy. (1)

As l in Eq. (1) tends to zero, the a;(l) tend for almost all

x; (with respect to the measure p) to the same limit D,
which is called the fractal dimension. However, for small
(but nonzero) l, the a;(I) take, on typical sets of i's, a
range of values between a;„and a . It has also been
pointed out that if the system is partitioned into boxes of
size 1, then the number of times one finds the scaling in-
dex a;(l) in the interval [a,a+da] is proportional to
l I' 'da, so that f(a) can be interpreted as the fractal di-
mension of the set of boxes that have a as their scaling in-
dex. The function f(a) can be therefore used as an addi-
tional way to characterize structural properties of strange
attractors. Successful applications of these ideas to exper-
imental systems have been reported recently.

In this paper, we show that a range of scaling indices
also exists for the dynamical properties of chaotic systems.

Furthermore, we give a reinterpretation of these scaling
indices and of the underlying scaling hypothesis in terms
of the thermodynamic formalism in dynamical systems.

To see this range of dynamical indices it is easiest to be-

gin with generalized entropies. ' Partitioning phase space
iilto boxes of size l and dividing the time axis into seg-
ments of size r, we define the probability P(ii, . . . , i„) to
be the joint probability that an orbit visits box i i at time
», is at time 2r in box iz, etc. The generalized entropies

E» are defined by

K» = lim liin ln g P(i i, . . . ,i„)",l . . 1

g —l /~0n-+oo lnT *

'n

Using this hypothesis and the definition of A in Eq. (2)
one sees ' that in the limit as T goes to 0,

K» —— [Aq —g (A)],1

q —l

and therefore the knowledge of E» yields both A and
g(A) according to

and

A= Rq),
BItIt

g(A) =r(q) q—

where T=e "'. It has been argued before that lim» oE»
and lim» iK» are the topological and metric (Kolmo-
gorov) entropies, respectively. K2 has been used as a con-
venient lower bound for K& in experimental applications.

We first define A(i i, . . . , i„)by

P(ii, . . . , i„)=T
Furthermore, we make the scaling hypothesis (to be justi-
fied below) that for l sufficiently small and fixed n, the
number of times one finds A(ii, . . . ,i„) in the interval
[A,A+dA] is

number of A(i „.. . , i„)E [A, A+ 1A] =T &'"'d A .
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where ~(q)=(q —1}E~. These formulas are Legendre
transforms of the same type as the formulas that relate
the o. scaling indices to the generalized dimensions D~.

To see the physical meaning of the numbers A we con-
sider a one-dimensional dynamical system x„+, f——(x„).
(The consequences are immediately generalizable to
higher-dimensional systems. ) Starting at a box h(ii) of
size i (small enough) the system can go to

~

1/f'(x)
~

boxes in the next step, where x C h(ii ). Generalizing, we
see that

p(&(ii ))

i
f'(xi)f'(x2) f'(x„ i) i

where xj E b, (ij ), and p(b(i i )) is the invariant measure of
the first box. Evidently,

lnP(ii, . . . „i„)=lnp(h(ii ))—g ln
~

f'( jx) ~,

however, that systeins with different ri can be dis-
tinguished via their g(A) function. One could calculate

Ez analytically and perform the Legendre transform to
obtain g(A). However, one can find g(A) directly, and
this calculation will shed some additional light into the
connection of the fluctuations with the thermodynamic
formalism for dynamical systems.

Observe that the map in Eq. (4) is expanding in the y
direction with rates ri

' and (I —g) ' for y&g and

y&q, respectively. These expanding rates are encoun-
tered with probabilities ri and (1—g), respectively. When
we compute the Liapunov exponent, which is the loga-
rithm of the product of these expansion rates (since the
Jacobian is diagonal}, we are led to ask for the probability
of seeing, in n steps, a product

—
P( 1 )

—(n —P)

or

—lnP(i~, . . . ,i„)= ——g ln
~

f'( &x) ~,
1 . . 1

This probability is

n
i)P(1 —ri }"

for large n Wri.ting this as

(iln)g lni f'(x )i.
P(l i, . . . , l~ T

and realizing that

lim —g ln
~

f'(x;)
~

=A, ,
1

n-+ ce

where A, is the Liapunov exponent, we see that for large
but finite n the range of possible A(ii, . . , . , i„) is the range
of possible fiuctuations around the Liapunov exponent.
Since we assumed that the number of times A is in

[A,A+dA] is T s'"'d A, the probability to see A is

T—[g(A) —g(A*)]

where g(A') is the largest g (i.e., the most probable}.
This result can be derived by the same saddle-point ap-
proximation that has been used to get the Legendre
transforms. Since T =e "', we see that the probability to
observe a deviation from the most probable A (namely
A') decays exponentially with n This resu. lt generalizes
in the case of multidimensional systems to the notion of
fiuctuations around the sum of positive Liapunov ex-
ponents.

To make these ideas concrete, and to obtain an analytic
example of a g(A) curve, we consider the simple two-
dimensional "skinny" baker's transformation. Given

0&(&,(2& —,, and an ri in the interval 0&g& —,', this
baker's transformation is a map of the unit square to itself
defined by

As n ~ 00, a use of Stirling's formula shows that the loga-
rithm of this probability is

—x ln(x/ri) —(1—x)ln[(1 —x)/(1 —ri)] —=s (x),
where x =p/n. Reexpressing this result in terms of the
original question of large deviations, we find that the
probability of seeing an expansion rate A=ln[g '(1
—ri) " "'], when looking at a segment of the orbit
which is of length n, is proportional to

e n fs(x) —s(g)]

Expressing x as a function of A, we obtain g by writing

n [s(x)—s(g)] T—rg(A) —g(A~)]

where A'=ln[ri "(1—ri) " i']. Figure 1 shows g(A)
for a few values of ri, and it is clear that the fiuctuations
of the Liapunov exponent will be different for different i).

91(A)

(fix,y/g) if y &7)
(x ~y )=

( —, +$2x, (y —i})/(1—ri)) if y ~ g .

We notice that the geometric structure of the strange
attractor of this map is independent of ri. We shall show,

FIG. 1. g„(A) for different values of q. The range of A ex-
tends, for fixed q, from —ln(1 —q) to —ln(g).
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It remains to justify the basic scaling assumption of Eq.
(3). The justification is based on the thermodynamic for-
malism for dynamical systems. ' ' The basic idea is to
relate the probability of seeing a section of a trajectory
(i), . . . ,i„) to observing a configuration of spins in an Is-
ing model (where the Ising model is more or less exotic
depending on the dynamical system and the partition of
phase space). The baker transformation (4) is a case in
point. There, the probability to see a trajectory
(ii, . . . ,i„) is simply ri (1—ri)'" ~) where p is the num-
ber of ii's corresponding to y &ri. This is also the proba-
bility of seeing a configuration of spins in an Ising model
without exchange interaction, but in a magnetic field.
Obviously, n simply becomes the length of the system,
and the thermodynamic limit is n ~ ao. The same can be
done for any expanding system f (sometimes even for
more general systems) using the ideas of Refs. 10—12.
Consider a partition of phase space into disjoint boxes 5;,
i =1, . . . , k. A k state Ising-like one-dimensional lattice
model is defined by allowing only those nearest-neighbor
configurations i,i' for which a transition is possible, i.e.,f(b; ) A b; &0. For each allowed configuration
ip, i, , . . . ,i„, there is a subset i))(i„i), . . . ,i„) of phase
space defined by

~(tp&t »)»)
= ( x: x E i));,f(x)E b,;, , . . . ,f"(x)6 lit I .

The size of these subsets goes to zero exponentially as
n~ao, and we denote b,(i) the limit point defined by
h(i)=b(i ip„. . . , i„, . . . ). Therefore, as n~ o,awe have
the important identity

I
~(tp 1» 1.)

I

=
I
~«) ~ ~ l. )

I
If'(~(i))

I

where
I
5

I
is the Lebesgue measure of b, . Define now

h(i) =ln
I
f'(&(i))

I
.

The thermodynamic formalism comes about by asking for
the conditional probability for x being in b, ;,, given that

fk(x) G b„„for k =1,2, . . . . It is

—a(I, ,I, , . . . )

e
—A(', ', . . . )

e

ioeI&, . . . , kI

This expression should be compared to the identity satis-

H I
——0.

~ t f
's 's+l

The potential 4 is naturally extended to all subsets of the
lattice by translation invariance. From this we easily ob-
tain the total energy for a configuration i on a finite sub-
lattice Q, which we denote by Un(i). If we also define by
W the interaction between this sublattice and the re-
mainder of the lattice, then we have the identification

U(p, . . . ,s) (lp&l )»~ ~ ~ is )+ Wlp&t ), . . . , ls I is+), . . . )

=h(t p, i), . '. .)+ +h(i„i,+„.. . ) .

Thus th«dentiftcation between the dynamical system and
the Gibbs ensemble is complete.

It is now very important to note that 4 is bounded by
maxln

I
f'(x)lf'(y) I, with x,y varying in 5(ip, i), . . . ,

i 1). From the expansivity assumption and a certain
regularity of f it follows that 4 decays exponentially
with m. The invariant measure p defined in this way is
thus seen to be equivalent to the Gibbs measure of a one-
dimensional Ising-like mode with short range forces. It is
well-known that in such systems, the probability to see a
finite deuiation of any observable in volume m is always
decaying exponentially with m. This is the underlying
mechanism for the applicability of the scaling hypothesis
in dynamical systems, as described above.

fied by the invariant measure p,

p(x) = p(y)

s f(s)=. If'(y)
I

The function h is a sort of total Hamiltonian and the con-
ditional probability looks like an expectation in the canon-
ical ensemble. This Gibbs state for this system turns out
to be an invariant measure for f. We now view h as the
energy contribution from the lattice site 0, and we want to
define a potential function 4 from which this energy
function derives. The customary definition for the m-site
(tr)-particle) interaction is

C'm(i 0&i)». . . lm —1) Hm(lp&/1». . . lm 1)

Hm —1(ip&i)» im —2) &

'Permanent address: Departement de Physique Theorique,
Universite de Geneve, CH-1211 Geneva 4, Switzerland.

N. B. Abraham, J. P. Gollub, and H. L. Swinney, Physica D
11, 252 (1984).

2I. Procaccia, Proceedings of the Nobel Symposium on Chaos
and Related Topics [Phys. Scr. 59, 40 (1985)l.

J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617 (1985).
4T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and

B. I. Shraiman, Phys. Rev. A 33, 1141 (1986).
~M. H. Jensen, L. P. Kadanoff, A. Libchaber, I Procaccia, and

J. Stavans, Phys. Rev. Lett. 55, 2798 (1985).
6After completing our paper we became aware of a paper deal-

ing with very similar aspects, but from a somewhat different
point of view: R. Benzi, G. Paladin, G. Parisi, and A. Vulpi-

ani, J. Phys. A 18, 2157 (1985).
7P. Grassberger and I. Procaccia, Phys. Rev. A 28, 2591 (1983).
8A. Cohen and I. Procaccia, Phys. Rev. A 31, 1972 (1985).
Write the sum of Eq. (2) as an integral over A. and estimate it

via a saddle-point approximation.
'OYa. G. Sinai, Usp. Mat. Nauk 27, 21 (1972) [Russian Math.

Surveys 27, 21 (1972)].
D. Ruelle, Thermodynamic Formalism, Vol. 5 of Encyclopedia
of Mathematics and its Applications (Addison-Wesley, Read-
ing, Mass. , 1978).
O. E. Lanford, in Statistica/ Mechanics, CINE Lectures
(1976).

~3M. J. Feigenbaum {unpublished).


